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Abstract
A particle entering a membrane channel either returns to the initial reservoir
from which it entered or goes through to escape on the opposite side. We prove
that the probability density of the translocation time is invariant with respect to
the direction of passage. This invariance holds at arbitrary asymmetry of the
intra-channel potential, i.e., independently of how different the translocation
probabilities are in the two directions. Assuming that the particle motion
is described as a continuous-time random walk between neighbouring sites
representing the channel, we give three proofs of the invariance. The present
analysis complements a recent proof of the invariance where we assumed
Langevin dynamics of the particle in the channel (Berezhkovskii et al 2006
Phys. Rev. Lett. 97 020601).

1. Introduction

This paper is devoted to translocation of charged or neutral particles through channels in
biological membranes. A few years ago we discovered a counterintuitive result concerning
the average time spent in the channel by translocating particles [1]. We found that this average
time is independent of the direction in which the particles go, in spite of the fact that the
translocation probabilities in the opposite directions may be quite different. Recently we have
shown that the direction-independence of the average transit time is a consequence of the more
general property of the particle dynamics in the channel, namely, direction-independence of the
probability density for this time. We proved independence of the translocation time probability
density of the passage direction for Langevin particles [2], for which diffusion corresponds to a
particular case of, so-called, high friction. A few months earlier this property of the probability
density of the translocation time was demonstrated by Alvarez and Hajek [3], who described the
particle motion in the channel in terms of a one-dimensional discrete-time random walk among
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discrete sites representing the channel. The proof given in [3] is based on detailed analysis of
the random walk trajectories that traverse the channel in both directions.

In this paper we also consider the site model of the channel to verify the independence of
the translocation time probability density of the passage direction. Assuming that there is only
one particle in the channel, we give three new proofs. The first one is based on the fact that the
particle propagator satisfies the condition of detailed balance. In fact, this is a discrete version
of the proof given in [2]. Our second proof is purely algebraic, while the third one is based
on classification of the translocating particle trajectories. The latter generalizes the proof given
in [3] to the continuous-time random walk. This proof seems to us more intuitively appealing
than the other two proofs since it is based on consideration of the qualitative features of the
particle motion in the channel that eventually lead to independence of the translocation time
probability density of the passage direction.

Our interest in this subject is motivated by the recent progress in studies of membrane
transport at the single-molecule level [4, 5]. Such studies allow analysis of the fine time
statistics of individual events of metabolite molecule translocation. Emerging evidence
demonstrates the complexity of particle–channel interactions [6] and particle dynamics in
the channel [7]. It is quite clear that in addition to ongoing experiments and computer
simulations [8, 9], a comprehensive picture of the channel-facilitated transport will necessarily
require progress in analytical theory. We hope that the present study is a step in this direction
offering a detailed consideration of an overlooked, but important feature of particle motion in
the channel.

The outline of the paper is as follows. In the next section we formulate the model and our
main statement, which is proved in section 3. Some concluding remarks are given in section 4.

2. The model

Let us assume that the particle motion in the channel can be described as a continuous-time
random walk between neighbouring sites as shown in the kinetic scheme

L ← 1 � 2 � · · · �
k−

i

i �
k+

i · · · � N → R (1)

where k+
i and k−

i are the transition rates from site i to its neighbouring right and left sites,
respectively. The channel is represented by N sites while L and R represent the left and right
reservoirs separated by the membrane. Particles entering the channel from the left reservoir start
from site 1. They either traverse the channel and exit into the right reservoir or return to the
left reservoir. Time spent in the channel by a translocating particle will be called ‘translocation
time’. We denote the probability density of this time by ϕN (t|L → R), where the subscript N
indicates the number of sites representing the channel. Correspondingly, particles entering the
channel from the right reservoir start from site N . The probability density of the translocation
time for such particles will be denoted as ϕN (t|R → L). In what follows we prove that

ϕN (t|L → R) = ϕN (t|R → L) (2)

for an arbitrary set of the transition rates k±
i , i = 1, 2, . . . , N . Importantly, this is true in spite

of the fact that the translocation probabilities in the two directions may be quite different.

3. Three proofs of equality (2)

3.1. Definitions

To prove equality (2) we introduce the propagator G N (i, t| j), which is the probability that
the particle occupies site i at time t on condition that it started from site j at t = 0,
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i, j = 1, 2, . . . , N . The probability flux formed by the particles which translocate from left to
right for time t , fN (t|L → R), is given by

fN (t|L → R) = k+
N G N (N, t|1). (3)

We use this flux to find the translocation probability, PN (L → R),

PN (L → R) =
∫ ∞

0
fN (t|L → R) dt = k+

N

∫ ∞

0
G N (N, t|1) dt (4)

and the probability density of the translocation time

ϕN (t|L → R) = fN (t|L → R)

PN (L → R)
= G N (N, t|1)∫ ∞

0 G N (N, t|1) dt
. (5)

Correspondingly, the probability density of the translocation time in the opposite direction is

ϕN (t|R → L) = G N (1, t|N)∫ ∞
0 G N (1, t|N) dt

. (6)

3.2. Proof 1

This proof is based on the fact that the propagators G N (N, t|1) and G N (1, t|N) are related by
the condition of detailed balance. To formulate this condition, consider an auxiliary random
walk obtained from the walk in equation (1) by putting k−

1 = k+
N = 0, that converts sites 1

and N into reflecting boundaries (RB). In this case the particle never escapes from the channel.
We denote the propagator for this random walk by GRB

N (i, t| j). As t → ∞, the propagator
GRB

N (i, t| j) approaches the equilibrium probability of finding the particle on site i , PRB
N (i |eq),

lim
t→∞ GRB

N (i, t| j) = PRB
N (i |eq). (7)

The propagator GRB
N (i, t| j) and the equilibrium probability PRB

N (i |eq) are related by the
relationship

GRB
N (i, t| j)PRB

N ( j |eq) = GRB
N ( j, t|i)PRB

N (i |eq) (8)

which is the condition of detailed balance for the random walk between the reflecting
boundaries. As shown in appendix A, the propagator G N (i, t| j) satisfies the condition of
detailed balance of the same form:

G N (i, t| j)PRB
N ( j |eq) = G N ( j, t|i)PRB

N (i |eq). (9)

We use this to prove equality (2). To do this consider the ratio of the probability densities
defined in equations (5) and (6):

ϕN (t|L → R)

ϕN (t|R → L)
= G N (N, t|1)

G N (1, t|N)

∫ ∞
0 G N (1, t|N) dt∫ ∞
0 G N (N, t|1) dt

. (10)

One can check that the ratio is equal to unity using the relation in equation (9), so that the two
probability densities are equal.

3.3. Proof 2

In this proof we use the Laplace transform of the propagator

Ĝ N (i, s| j) =
∫ ∞

0
e−st G N (i, t| j) dt (11)

3
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and the definitions of the probability densities given in equations (5) and (6) to write the
equality (2) in the form

Ĝ N (1, 0|N)Ĝ N (N, s|1) = Ĝ N (N, 0|1)Ĝ N (1, s|N). (12)

By explicit calculation one can check that this is true for N = 1 and 2. To prove this in general
we derive some relations between the propagator describing the particle motion in the N-site
channel and the propagator G N−1(i, t| j), i, j = 1, 2, . . . , N − 1, that describes motion of the
particle in the (N −1)-site channel which is obtained by putting k+

N = ∞ in the kinetic scheme
shown in equation (1).

We begin with the propagator G N (N, t|1), which satisfies

G N (N, t|1) = k+
N−1

∫ t

0
G N (N, t − t1|N)G N−1(N − 1, t1|1) dt1. (13)

The propagator G N (N, t|N), respectively, satisfies

G N (N, t|N) = e−kN t + k−
N k+

N−1

∫ t

0
dt1 e−kN t1

∫ t−t1

0
G N (N, t − t1 − t2|N)

× G N−1(N − 1, t2|N − 1) dt2, (14)

where kN = k+
N + k−

N . Solving these equations we find a relation between the Laplace
transforms of the propagators Ĝ N (N, s|1) and Ĝ N−1(N − 1, s|1). The relation is

Ĝ N (N, s|1) = k+
N−1Ĝ N−1(N − 1, s|1)

s + kN − k−
N k+

N−1Ĝ N−1(N − 1, s|N − 1)
. (15)

Next we find the Laplace transform of the propagator G N (1, t|N), which satisfies

G N (1, t|N) = k−
N

∫ t

0
e−kN t1

[
G N−1(1, t − t1|N − 1)

+ k+
N−1

∫ t−t1

0
G N (1, t − t1 − t2|N)G N−1(N − 1, t2|N − 1) dt2

]
dt1. (16)

Solving this we obtain a relation between the Laplace transforms of the propagators
Ĝ N (1, s|N) and Ĝ N−1(1, s|N − 1). The relation is

Ĝ N (1, s|N) = k−
N Ĝ N−1(1, s|N − 1)

s + kN − k−
N k+

N−1Ĝ N−1(N − 1, s|N − 1)
. (17)

Using the Laplace transforms in equations (15) and (17), we find that the products of the
propagators on the left- and right-hand sides of equation (12), respectively, are

Ĝ N (1, 0|N)Ĝ N (N, s|1)

= k−
N k+

N−1Ĝ N−1(1, 0|N − 1)Ĝ N−1(N − 1, s|1)

[kN − k−
N k+

N−1Ĝ N−1(N − 1, 0|N − 1)][s + kN − k−
N k+

N−1Ĝ N−1(N − 1, s|N − 1)]
(18)

and

Ĝ N (N, 0|1)Ĝ N (1, s|N)

= k−
N k+

N−1Ĝ N−1(N − 1, 0|1)Ĝ N−1(1, s|N − 1)

[kN − k−
N k+

N−1Ĝ N−1(N − 1, 0|N − 1)][s + kN − k−
N k+

N−1Ĝ N−1(N − 1, s|N − 1)] .
(19)
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Comparison shows that the equality (12) is fulfilled when the propagator describing the particle
motion in the fictitious (N − 1)-site channel satisfies

Ĝ N−1(1, 0|N − 1)Ĝ N−1(N − 1, s|1) = Ĝ N−1(N − 1, 0|1)Ĝ N−1(1, s|N − 1). (20)

This is the analogue of equality (12) for the (N − 1)-site channel. Repeating this procedure
we eventually find that the equality (12) is fulfilled because it is true for the corresponding
fictitious two-site channel, for which Ĝ2(2, s|1) = k+

1 /D(s) and Ĝ2(1, s|2) = k−
2 /D(s),

where D(s) = (k+
1 + k−

1 + s)(k+
2 + k−

2 + s) − k+
1 k−

2 . Thus, we have proved the equality (12)
and, hence, the identity of the probability densities of the forward and backward translocation
times in equation (2) for an arbitrary set of the transition rates k±

i , i = 1, 2, . . . , N .

3.4. Proof 3

Equality (2) might look counterintuitive at first sight. Indeed, in the case of large
transmembrane electric fields acting on charged particles, the translocation probabilities in
the two directions can be different by orders of magnitude. Under these conditions it may
seem surprising that the two time distributions are identical. To make this identity more
intuitively appealing, we give another proof which is based on the consideration of trajectories
contributing into ϕN (t|L → R) and ϕN (t|R → L). We note that all trajectories of particles
translocating from left to right can be classified depending on how many loops of a particular
type the trajectory has. Denoting different classes of trajectories by α we can write the flux
fN (t|L → R) as a sum of contributions f (α)

N (t|L → R) due to the trajectories belonging to
different classes α:

fN (t|L → R) =
∑

α

f (α)
N (t|L → R). (21)

Correspondingly, the translocation probability PN (L → R) can be written as

PN (L → R) =
∑

α

P(α)
N (L → R) (22)

where the contribution P(α)
N (L → R) is given by

Pα
N (L → R) =

∫ ∞

0
f (α)

N (t|L → R) dt . (23)

Next we introduce the relative weights of the contributions due to the trajectories belonging
to different classes α, w

(α)

N (L → R), defined by

w
(α)
N (L → R) = P(α)

N (L → R)

PN (L → R)
(24)

and the probability densities of the translocation time for each class of the trajectories,
ϕ

(α)

N (t|L → R), defined as

ϕ
(α)
N (t|L → R) = f (α)

N (t|L → R)

P(α)

N (L → R)
. (25)

This allows us to write the probability density ϕN (t|L → R) as a weighted sum of ϕ
(α)
N (t|L →

R):

ϕN (t|L → R) =
∑

α

w
(α)
N (L → R)ϕ

(α)
N (t|L → R). (26)

For any trajectory of a particle translocating from left to right there exists its time-
reversed counterpart of a particle translocating from right to left and vice versa. Therefore, the

5
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classification of the forward trajectories is also applicable to the backward ones. This implies
that we can rewrite the relations given in equations (21)–(26) replacing L → R by R → L and
present the probability density ϕN (t|R → L) as a weighted sum:

ϕN (t|R → L) =
∑

α

w
(α)

N (R → L)ϕ
(α)

N (t|R → L). (27)

Next we note that the probability densities ϕ
(α)

N (t|L → R) and ϕ
(α)

N (t|R → L) are equal:

ϕ
(α)
N (t|L → R) = ϕ

(α)
N (t|R → L) (28)

since the probability density for the particle lifetime on a site is independent of the direction
in which the particle makes a step. For site i this probability density is ki exp(−ki t), where
ki = k+

i + k−
i . In addition, the relative weights w

(α)
N (L → R) and w

(α)
N (R → L) are also

equal:

w
(α)
N (L → R) = w

(α)
N (R → L) (29)

since topologically identical trajectories equally contribute into both weights: the weight
w

(α)

N (R → L) is formed by trajectories which are time-reversed counterparts of the trajectories
contributing into w

(α)
N (L → R) and vice versa. As a consequence, probability densities (27)

and (28) are equal and, hence, equality (2) is fulfilled.

3.5. Illustration

Substituting the definition of w
(α)
N (L → R) given in equation (24) and the definition of

w
(α)

N (R → L),

w
(α)
N (R → L) = P(α)

N (R → L)

PN (R → L)
(30)

into equation (29), we find that the ratio P(α)
N (L → R)/P(α)

N (R → L) is independent of α and
is given by

P(α)

N (L → R)

P(α)
N (R → L)

= PN (L → R)

PN (R → L)
. (31)

To illustrate this relation we consider a two-site model described by the kinetic scheme

L ←
k−

1

1 �
k−

2

k+
1

2 →k
+
2

R. (32)

The probabilities that the particle occupying site i , i = 1, 2, makes a step to the left, �−
i ,

or to the right, �+
i , are given by �±

i = k±
i /ki . In the two-site model only simple two-step

(step forward, step backward) loops are possible. We classify all translocating trajectories
by the number of loops which the trajectory has, taking α equal to the number of loops,
α = 0, 1, 2, . . .. Then the translocation probabilities P(α)

2 (L → R) and P(α)

2 (R → L) are
given by

P(α)
2 (L → R) = �+

1 �+
2 (�+

1 �−
2 )α (33)

and

P(α)

2 (R → L) = �−
1 �−

2 (�+
1 �−

2 )α. (34)

6
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Figure 1. Three simplest classes of translocating trajectories and probabilities of their realizations
in kinetic scheme (32).

In figure 1 we show three simplest classes of trajectories, with α = 0, 1, 2, corresponding
to translocations in both directions, and give probabilities of their realizations. Using the
expressions given in equations (33) and (34) we find that

P2(L → R) =
∞∑

α=0

P(α)

2 (L → R) = �+
1 �+

2

�−
1 + �+

1 �+
2

(35)

and

P2(R → L) =
∞∑

α=0

P(α)

2 (R → L) = �−
1 �−

2

�+
2 + �−

1 �−
2

. (36)

Alternatively, one can derive these expressions solving the rate equations as shown in
appendix B. Using the expressions given in equations (33)–(36) and the fact that the
denominators in equations (35) and (36) are identical, one can check that the relation (31)
is fulfilled for any α.

4. Concluding remarks

In the present paper we have proved independence of the translocation time probability density
of the passage direction for particles going through membrane channels. We describe the
particle motion in the channel as a continuous-time random walk between neighbouring sites
with arbitrary transition rates. Therefore the invariance of the translocation time probability
density with respect to the passage direction holds independently of how different the
translocation probabilities in the two directions are.

The proofs given in the present paper for the random walk model of the particle motion in
the channel complement the proof given in [2], where the motion was described in terms of the

7
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Langevin dynamics. Based on this, we believe that the property of the particle dynamics in the
channel analysed in the present paper and in [2, 3] is quite general and equation (2) is true for
any model of the particle motion in the channel independently of the strength of the external
field as well as the nature of the particle–channel interaction.
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Appendix A. Condition of detailed balance

Consider a continuous-time random walk between N sites assuming that the walking particle
occupying site i can be trapped with the trapping rate γi i = 1, 2, . . . , N . The propagator
G(i, t| j) (we omit subscript N in this appendix) satisfies an evolution equation of the form

dG (i, t| j)

dt
=

N∑
k=1

(Kik − �ik)G(k, t| j) (A.1)

and the initial condition G(i, 0| j) = δi j , where Ki j and �i j are N×N matrices of transition and
trapping rates, respectively. The matrix element Ki j with i �= j is the rate constant for transition
j → i , and K j j = − ∑N

i=1,i �= j Ki j . Matrix elements �i j are given by �i j = γ jδi j . For the
random walk considered in the main body of the text γ1 = k−

1 , γ2 = γ3 = · · · = γN−1 = 0, and
γN = k+

N . Matrix elements of the transition rate matrix are Ki j = k+
i−1δ j i−1 −kiδi j +ki+1δ j i+1,

where ki = k−
i + k+

i .
Because of the trapping the particle survival probability tends to zero as t → ∞. When all

trapping rates are equal to zero, the particle never dies and the propagator describes relaxation
to the steady-state distribution which is assumed to be the equilibrium one, P(i |eq),

lim
t→∞ G(i, t| j)|no trapping = P(i |eq). (A.2)

Matrix elements of the transition rate matrix and P(i |eq) are related by the condition of detailed
balance:

Ki j P( j |eq) = K ji P(i |eq). (A.3)

The goal of this appendix is to show that the propagator G(i, t| j) satisfies the condition of
detailed balance that has the form

G(i, t| j)P( j |eq) = G( j, t|i)P(i |eq) (A.4)

similar to that in equation (A.3).
With this in mind we symmetrize the evolution operator on the right-hand side of

equation (A.1) by writing the propagator as

G(i, t| j) = √
P(i |eq) f (i, t| j). (A.5)

Function f (i, t| j) satisfies an evolution equation of the form

d f (i, t| j)

dt
=

N∑
k=1

(Hik − �ik) f (k, t| j) (A.6)

8
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where Hi j is given by

Hi j = Ki j

√
P( j |eq)

P(i |eq)
= Ki j

√
K ji

Ki j
. (A.7)

The initial condition for equation (A.6) is

f (i, 0| j) = 1√
P( j |eq)

δi j . (A.8)

One can see that Hi j = H ji . Thus, the evolution operator on the right-hand side of
equation (A.6) is symmetric. Using its eigenfunctions, ϕn(i), that satisfy

N∑
j=1

(Hi j − �i j)ϕn( j) = εnϕn(i), n = 1, 2, . . . , N (A.9)

we can write the eigenfunction expansion of the propagator g(i, t| j) corresponding to the
evolution equation (A.6):

g(i, t| j) =
N∑
1

ϕn(i)ϕn( j) exp(εnt). (A.10)

We use this propagator to find the solution for f (i, t| j) and then for the propagator
G(i, t| j). The result is

G(i, t| j) = √
P(i |eq)g(i, t| j)

1√
P( j |eq)

. (A.11)

This expression for the propagator together with the expression in equation (A.10) allows one
to check that G(i, t| j) satisfies the condition of detailed balance in equation (A.4).

Appendix B. Translocation probabilities for the two-site model

For the two-site model described by kinetic scheme (32) the translocating flux f2(t|L → R) is
given by

f2(t|L → R) = k+
2 G2(2, t|1). (B.1)

The propagator G2(i, t|1), i = 1, 2, can be found by solving the equations
dG2 (1, t|1)

dt
= −k1G2(1, t|1) + k−

2 G2(2, t|1). (B.2)

dG2 (2, t|1)

dt
= k+

1 G2(1, t|1) − k2G2(2, t|1) (B.3)

with the initial condition G2(i, t|1) = δi1. Solving these equations we find that the Laplace
transform of the flux is

f̂2(s|L → R) = k+
1 k+

2

(s + k1)(s + k2) − k+
1 k−

2

. (B.4)

We use this transform to find the translocation probability

P2(L → R) = f̂2(0|L → R) = k+
1 k+

2

k1k2 − k+
1 k−

2

(B.5)

which is identical to the expression in equation (35). Following the same way one can derive

P2(R → L) = k−
1 k−

2

k1k2 − k+
1 k−

2

(B.6)

which is identical to the expression in equation (36).

9
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